Teaser 3038: Progressive raffle

From The Sunday Times, 13th December 2020 [link]

George and Martha were participating in the local village raffle. 1000 tickets were sold, numbered normally from 1 to 1000, and they bought five each. George noticed that the lowest-numbered of his tickets was a single digit, then each subsequent number was the same multiple of the previous number, e.g. (7, 21, 63, 189, 567). Martha’s lowest number was also a single digit, but her numbers proceeded with a constant difference, e.g. (6, 23, 40, 57, 74). Each added together all their numbers and found the same sum. Furthermore, the total of all the digits in their ten numbers was a perfect square.

What was the highest numbered of the ten tickets?