Teaser 3025: Please mind the gap
From The Sunday Times, 13th September 2020 [link]
Ann, Beth and Chad start running clockwise around a 400m running track. They run at a constant speed, starting at the same time and from the same point; ignore any extra distance run during overtaking.
Ann is the slowest, running at a whole number speed below 10 m/s, with Beth running exactly 42% faster than Ann, and Chad running the fastest at an exact percentage faster than Ann (but less than twice her speed).
After 4625 seconds, one runner is 85m clockwise around the track from another runner, who is in turn 85m clockwise around the track from the third runner.
They decide to continue running until gaps of 90m separate them, irrespective of which order they are then in.
For how long in total do they run (in seconds)?
[teaser3025]
Jim Randell 5:28 pm on 11 September 2020 Permalink |
For the distances involved they must be very serious runners.
I amused myself by writing a generic function to check the runners are evenly spaced. Although for the puzzle itself it is possible to use a simpler formulation that does not always produce the correct result. But once you’ve got that sorted out the rest of the puzzle is straightforward.
This Python program runs in 55ms.
Run: [ @replit ]
Solution: They run for 7250 seconds (= 2 hours, 50 seconds).
After which time A will have covered 29 km (about 18 miles), B will have covered 41.2 km (about 25.6 miles), and C (who runs at a speed 161% that of A) will have covered 46.7 km (about 29 miles), which is pretty impressive for just over 2 hours.
For comparison, Mo Farah on his recent world record breaking run of 21,330 m in 1 hour [link], would not have been able to keep up with C (who maintained a faster pace for just over 2 hours), and would be only slightly ahead of B at the 1 hour mark.
LikeLike